摘要:手术导航技术通过在术中实时提供关于病灶位置以及周边解剖结构的信息,有助于弥补机器人辅助腹腔镜手术中外科医师缺失的触觉反馈,提高手术的安全性和有效性。以影像导航手术(image-guided surgery,IGS)、荧光导航手术(fluorescence-guided surgery,FGS)为代表的手术导航技术在多种泌尿外科机器人辅助手术中得到了应用,可用于识别血管等重要解剖结构、辨认肿瘤边缘、定位病灶以及评估组织血流灌注,不仅能够降低手术凤险,还能够辅助医师更精准地切除病灶,更好地保护术后器官功能。本文详细介绍了手术导航技术在多种泌尿外科机器人辅助手术中的应用进展,强调了这类技术在提高手术精确性、保护正常组织、改善术后恢复等方面的潜在优势。
暂无相关信息!
[1] ZHU W,XIONG S,FANG D,et al.Minimally invasive ileal ureter replacement:Comparative analysis of robot-assisted laparoscopic versus conventional laparoscopic surgery [J].Int J Med Robot,2021,17(3):e2230.
[2] BERTOLO R,BOVE P,SANDRI M,et al.Cross-analysis of two randomized controlled trials to compare pure versus robot-assisted laparoscopic approach during off-clamp partial nephrectomy [J].Minerva Urol Nephrol,2022,74(1):5-10.
[3] PERVEZ A,AHMED K,THOMPSON S,et al.Image guided robotic surgery:current evidence for effectiveness in urology [J].Arch Ital Urol Androl,2014,86(4):245-248.
[4] HUGHES-HALLETT A,MAYER EK,MARCUS HJ, et al.Augmented Reality Partial Nephrectomy:Examining the Current Status and Future Perspectives [J].Urology, 2014,83(2):266-273.
[5] ZHAO Z,POYHONEN J,CHEN CAI X,et al.Augmented reality technology in image-guided therapy:State-of-the-art review [J].Proc Inst MechEng H,2021,235(12):1386-1398.
[6] HAMACHER A,KIM SJ,CHO ST,et al.Application of Virtual,Augmented,and Mixed Reality to Urology [J]. Int Neurourol J,2016,20(3):172-181.
[7] REINHART MB,HUNTINGTON CR,BLAIR LJ,et al. Indocyanine Green:Historical Context,Current Applications, and Future Considerations [J].Surg Innov,2016,23(2): 166-175.
[8] KOCHUBEY VI.Spectral Characteristics of Indocyanine Green upon Its Interaction with Biological Tissues [J].OptSpectrosc, 2005,99(4):560.
[9] VAN DER PAS MHGM,VAN DONGEN GAMS, CAILLER F,et al.Sentinel node procedure of the sigmoid using indocyanine green:feasibility study in a goat model [J]. Surg Endosc,2010,24(9):2182-2187.
[10] SCHAAFSMA BE,MIEOG JSD,HUTTEMAN M,et al.The clinical use of indocyanine green as a near infrared fluorescent contrast agent for image guidedoncologic surgery [J].J Surg Oncol,2011,104(3):323-332.
[11] MOTTET N,VAN DEN BERGH RCN,BRIERS E, et al.EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update.Part 1:Screening,Diagnosis, and Local Treatment with Curative Intent [J].Eur Urol, 2021,79(2):243-262.
[12] OU YC,YANG CK,WANG J,et al.The trifecta outcome in 300 consecutive cases of robotic-assisted laparoscopic radical prostatectomy according to D'Amico risk criteria [J].Eur J Surg Oncol,2013,39(1):107-113.
[13] PORPIGLIA F,CHECCUCCI E,AMPARORE D,et al. Three-dimensional Elastic Augmented-reality Robot-assisted Radical Prostatectomy Using Hyperaccuracy Three-dimensional Reconstruction Technology:A Step Further in the Identification of Capsular Involvement [J].Eur Urol,2019,76(4):505-514.
[14] BIANCHI L,CHESSA F,ANGIOLINI A,et al.The Use of Augmented Reality to Guide the Intraoperative Frozen Section During Robot-assisted Radical Prostatectomy [J]. Eur Urol,2021,80(4):480-488.
[15] SCHIAVINA R,BIANCHI L,LODI S,et al.Real-time Augmented Reality Three-dimensional Guided Robotic Radical Prostatectomy:Preliminary Experience and Evaluation of the Impact on Surgical Planning [J].Eur Urol Focus,2021, 7(6):1260-1267.
[16] CHECCUCCI E,PECORARO A,AMPARORE D,et al. The impact of 3D models on positive surgical margins after robot-assisted radical prostatectomy [J].World J Urol,2022, 40(9):2221-2229.
[17] PATEL VR,SCHATLOFF O,CHAUHAN S,et al.The Role of the Prostatic Vasculature as a Landmark for Nerve Sparing During Robot-Assisted Radical Prostatectomy [J]. Eur Urol,2012,61(3):571-576.
[18] AMARA N,AL YOUSSEF T,MASSA J,et alIntraoperative angiography of the neurovascular bundle using indocyanine green and near-infrared fluorescence improves anatomical dissection during robot-assisted radical prostatectomy: initial clinical experience [J].J Robotic Surg,2022,17(2): 687-694.
[19] HARKE NN,GODES M,WAGNER C,et al.Fluorescence- supported lymphography and extended pelvic lymph node dissection in robot-assisted radical prostatectomy:a prospective, randomized trial [J].World J Urol,2018,36(11):1817-1823.
[20] SHIMBO M,ENDO F,MATSUSHITA K,et al Impact of indocyanine green-guided extended pelvic lymph node dissection during robot-assisted radical prostatectomy [J].Int J Urol,2020,27(10):845-850.
[21] CHENNAMSETTY A,ZHUMKHAWALA A,TOBIS SB, et al.Lymph Node Fluorescence During Robot-Assisted Radical Prostatectomy With Indocyanine Green:Prospective Dosing Analysis [J].Clin Genitourin Cancer,2017,15(4): e529-e534.
[22] GANDAGLIA G,MAZZONE E,STABILE A,et al Prostate-specific membrane antigen Radioguided Surgery to Detect Nodal Metastases in Primary Prostate Cancer Patients Undergoing Robot-assisted Radical Prostatectomy and Extended Pelvic Lymph Node Dissection:Results of a Planned Interim Analysis of a Prospective Phase 2 Study [J].Eur Urol, 2022,82(4):411-418.
[23] LJUNGBERG B,ALBIGES L,ABU-GHANEM Y,et al. European Association of Urology Guideines on Renal Cell Carcinoma:The 2022 Update [J].Eur Urol,2022,82(4): 399-410.
[24] ZARGAR H,ALLAF ME,BHAYANI S,et al.Trifecta and optimal perioperative outcomes of robotic and laparoscopic partial nephrectomy in surgical treatment of small renal masses: a multi-institutional study [J].BJU Int,2015,116(3):407-414.
[25] MATTEVI D,LUCIANI LG,MANTOVANI W,et al. Fluorescence-guided selective arterial clamping during RAPN provides better early functional outcomes based on renal scan compared to standard clamping [J].J Robotic Surg,2019, 13(3):391-396.
[26] GILL IS,EISENBERG MS,ARON M,et al.“Zero Ischemia”Partial Nephrectomy:Novel Laparoscopic and Robotic Technique [J].Eur Urol,2011,59(1):128-134.
[27] NG CK,GILL IS,PATIL MB,et al.Anatomic Renal Artery Branch Microdissection to Facilitate Zero-Ischemia Partial Nephrectomy[J].Eur Urol,2012,61(1):67-74.
[28] AMPARORE D,CHECCUCCI E,PIAZZOLLA P,et al. IndocyanineGreen Drives Computer Vision Based 3D Augmented Reality Robot Assisted Partial Nephrectomy:The Beginning of “Automatic”Overlapping Era [J].Urology,2022,164:e312-e316.
[29] LI G,DONG J,WANG J,et al.The clinical application value of mixed-reality-assisted surgical navigation for laparoscopic nephrectomy [J].Cancer Med,2020,9(15):5480-5489.
[30] SCHIAVINA R,BIANCHI L,CHESSA F,et al.Augmented Reality to Guide Selective Clamping and Tumor Dissection During Robot-assisted Partial Nephrectomy:A Preliminary Experience [J].Clin Genitourin Cancer,2021,19(3):el49-e155.
[31] AMPARORE D,PIRAMIDE F,CHECCUCCI E,et al. Three-dimensional Virtual Models of the Kidney with Colored Perfusion Regions:A New Algorithm-based Tool for Optimizing the Clamping Strategy During Robot-assisted Partial Nephrectomy [J].Eur Urol,2023,84(4):418-425.
[32] PORPIGLIA F,CHECCUCCI E,AMPARORE D,et al. Three-dimensional Augmented Reality Robot-assisted Partial Nephrectomy in Case of Complex Tumours (PADUA≥10): A New Intraoperative Tool Overcoming the UltrasoundGuidance [J].Eur Urol,2020,78(2):229-238.
[33] MC-CLINTOCK TR,BJURLIN MA,WYSOCK JS,et al Can selective arterial clamping with fluorescence imaging preserve kidney function during robotic partial nephrectomy?[J].Urology,2014,84(2):327-332.
[34] YANG YK,HSIEH ML,CHEN SY,et al.Clinical Benefits of Indocyanine Green Fluorescence in Robot-Assisted Partial Nephrectomy [J].Cancers,2022,14(12):3032.
[35] KOBAYASHI S,CHO B,MUTAGUCHI J,et al.Surgical Navigation Improves Renal Parenchyma Volume Preservation in Robot-Assisted Partial Nephrectomy:A Propensity Score Matched Comparative Analysis [J].J Urol,2020,204(1): 149-156.
[36] SENTELL KT,FERRONI MC,ABAZA R.Near-infrared fluorescence imaging for intraoperative margin assessment during robot-assisted partial nephrectomy [J].BJU Int,2020,126(2): 259-264.
[37] SIMONE G,TUDERTI G,ANCESCHI U,et al.“Ride the Green Light":Indocyanine Green-marked Off-clamp Robotic Partial Nephrectomy for Totally Endophytic Renal Masses [J].Eur Urol,2019,75(6):1008-1014.
[38] O'REILLY PH,BROOMAN PJ,MAK S,et al.The long-term results of Anderson-Hynes pyeloplasty [J].BJU Int,2001,87(4):287-289.
[39] AUTORINO R,EDEN C,EL-GHONEIMI A,et al. Robot-assisted and Laparoscopic Repair of Ureteropelvic Junction Obstruction:A Systematic Review and Meta-analysis [J]. Eur Urol,2014,65(2):430-452.
[40] BAEK M,SILAY MS,AU JK,et al.Quantifying the Additional Difficulty of Pediatric Robot-Assisted Laparoscopic Re-Do Pyeloplasty:A Comparison of Primary and Re-Do Procedures [J].J Laparoendosc Adv Surg Tech A,2018, 28(5):610-616.
[41] CHENG S,LI X,ZHU W,et al.Real-time navigation by three-dimensional virtual reconstruction models in robot- assisted laparoscopic pyeloplasty for ureteropelvic junction obstruction:our initial experience [J].Transl Androl Urol 2021,10(1):125-133.
[42] BJURLIN MA,GAN M,MC-CLINTOCK TR,et al. Near-infrared Fluorescence Imaging:Emerging Applications in Robotic Upper Urinary Tract Surgery [J].Eur Urol, 2014,65(4):793-801.
[43] LEE Z,MOORE B,GIUSTO L,et al.Use of Indocyanine Green During Robot-assisted Ureteral Reconstructions [J]. Eur Urol,2015,67(2):291-298.
[44] ZENG S,XING S,XING W,et al.Application of Indocyanine Green in Combination with Da Vinci Xi Robot in Surgeries on the Upper Urinary Tract:A Case Series Study [J].JCM,2023,12(5):1980.
[45] AHMADI N,ASHRAFI AN,HARTMAN N,et al. Use ofindocyanine green to minimise uretero-enteric strictures after robotic radical cystectomy [J].BJU Int,2019,124(2):302-307.
[46] 黄晨,陈昊,刘靓,等,吲哚菁绿荧光显影技术在机器人辅助 腹腔镜上尿路重建手术中的应用[J]. 泌尿外科杂志(电子版), 2023,15(1):18-23.
[47] DOERSCH KM,HINES L,AJAY D.Narrative review of flaps and grafts in robotic reconstructive urologic surgery [J]. Ann Laparosc Endosc Surg,2024,9:5.
[48] RAI A,HSIEH A,SMITH A.Contemporary diagnosis and management of pelvi-ureteric junction obstruction [J]. BJU Int,2022,130(3):285-290.
[49] ZHU W,XIONG S,WU Y,et al.Indocyanine green fluorescence imaging for laparoscopic complex upper urinary tract reconstructions:a comparative study [J].Transl Androl Urol,2021,10(3):1071-1079.
[50] HOFFMANN C,COMPTON F,SCHAFER JH,et al. Intraoperative assessment of kidney allograft perfusion by laser-assisted indocyanine green fluorescence videography [J] Transplant Proc,2010,42(5):1526-1530.
[51] VIGNOLINI G,SESSA F,GRECO I,et al.Intraoperative assessment of ureteral and graft reperfusion during robotic kidney transplantation with indocyanine green fluorescence videography [J].Minerva Urol Nefrol,2019,71(1):79-84.
[52] IETTO G,IORI V,INVERSINI D,et al.Indocyanine Green Angiography for Quality Assessment of Renal Graft Before Transplantation:A Pilot Study [J].Exp Clin Transplant, 2023,21(2):110-115.
[53] GOKCEIMAM M,KAHRAMANGIL B,AKBULUT S, et al.Robotic Posterior Retroperitoneal Adrenalectomy: Patient Selection and Long-Term Outcomes [J].Ann Surg Oncol,2021,28(12):7497-7505.
[54] KAHRAMANGIL B,KOSE E,BERBER E.Characterization of fluorescence patterns exhibited by different adrenal tumors: Determining the indications for indocyanine green use in adrenalectomy [J].Surgery,2018,164(5):972-977.
[55] SAVIO LF,PANIZZUTTI BARBOZA M,ALAMEDDINE M, et al.Combined Partial Penectomy With Bilateral Robotic Inguinal Lymphadenectomy Using Near-infrared Fluorescence Guidance [J].Urology,2018,113:251.
[56] YUAN P,YAO K,ZHOU Z,et al.“Light green up”: Indocyanine Green Fluorescence Imaging-guided Robotic Bilateral Inguinal Lymphadenectomy by the Hypogastric Subcutaneous Approach for Penile Cancer [J].Eur Urol Open Sci,2022, 45:1-7.
[57] MANNY TB,HEMAL AK.Fluorescence-enhanced robotic radical cystectomy using unconjugated indocyanine green for pelvic lymphangiography,tumor marking,and mesenteric angiography:the inital clinical experience [J].Urology,2014, 83(4):824-829.
暂无相关信息!
近年来,机器人辅助腹腔镜手术改变了腹腔镜手术的格局,越来越受到泌尿外科医师的青睐[1-2]。机器人辅助手术提供了更高的精度以及灵活性,却在一定程度上削弱了外科医师在手术中的触觉反馈,在这种情况下,借助手术导航技术可以在一定程度上解决缺乏术中感官反馈的问题,从而提高整个手术过程的准确性、安全性和手术医师的信心[3-4]。手术导航是一种综合利用计算机、影像仪器和图像处理仪器等设备来引导外科医师进行手术操作的技术,可以帮助外科医师精确定位病灶、分析各种复杂解剖结构,以提高手术的安全性、精确性,帮助医师开展手术。导航系统的数据来源包括三维(three-dimension,3D)超声、计算机断层扫描(computedtomography,CT)、磁共振成像(magneticresonanceimaging,MRI)等影像方法。导航系统将处理后的信息主要以视觉的方式呈现,借此来协助外科医师进行手术。目前手术导航技术已经运用在泌尿外科多个细分领域的机器人辅助腹腔镜手术当中,本文将对手术导航技术在泌尿外科机器人辅助腹腔镜手术中的应用进展进行综述。
1 手术导航技术的定义及现状
2 手术导航技术在泌尿外科机器人辅助腹腔镜手术中的应用
2.1 机器人辅助根治性前列腺切除术
2.2 机器人辅助肾部分切除术
2.3 机器人辅助上尿路重建手术
2.4 其他泌尿外科机器人手术
3 总结与展望
手术导航系统通过综合应用3D重建、增强现实、术中荧光等技术,为手术医师在术中寻找、定位病灶以及分析病灶及周围脏器的解剖结构和空间毗邻提供了帮助。机器人辅助手术系统中已经存在的电子内窥镜以及显示器等设备也可以较好地与各种导航技术相结合,促进了新技术的导入。目前导航技术已经在泌尿外科的多种机器人辅助手术中得到了应用,并在精准定位病变、保护正常组织、改善术后恢复、降低手术难度等方面展现出一定的优势。但仍存在诸多挑战,如在3D-AR导航技术中,如何将AR图像与真实视野下的手术部位进行配准,使两者准确地重叠在一起,目前采取的方法主要是由助手实时拖动导航图像,进行手动配准。此外,在术前进行3D重建时,也需要经验丰富的外科医师与影像科医师手动进行勾画。以上问题明显增加了使用该技术的人力成本以及时间成本,降低了易用度,阻碍了技术的推广。解决以上问题仍需要包括人工智能在内的新技术的导入以及研究者们更多的探索。而在FGS技术方面,目前国内外尚无统一的ICG给药时间、剂量、浓度的标准和范围,有待进一步研究确定。并且当下针对以上手术导航技术的研究多为观察性研究且样本量有限,未来仍需要更多精心设计的随机对照试验来提供多中心、大样本量的经验证据。期待随着科技的不断进步,全新的技术能够被投入临床实践中,拓展手术导航技术在泌尿外科机器人辅助手术中的应用范围,进一步辅助临床诊疗。
暂无相关信息!
暂无相关信息!