泌尿系结石是常见泌尿系统疾病之一,2024年泌尿系结石诊治取得了重要进展,包括新一代基因组学研究揭示了更多与结石形成相关的遗传变异;人工智能、机器深度学习、大数据等技术在泌尿系结石诊治方面得到广泛应用,显著提高了临床诊治水平;新型一次性电子输尿管软镜、肾镜及配套智能控温控压技术使得结石微创手术更加安全有效;更多机器人辅助结石手术平台开展临床应用;药物预防结石复发取得新的成果。这些进展将有助于为患者提供个体化的管理方案,显著提高治疗效果,改善患者的生活质量。
暂无相关信息!
[1] TAN S, YUAN D, SU H, et al. Prevalence of urolithiasis in China: a systematic review and meta-analysis [J]. BJU Int, 2024, 133(1): 34-43.
[2] SERRELL E, ANTAR AS, BUINEVICIUS E, et al. Surgical Stone Trends from 2013 to 2021 in the US Medicare Population: Before and after the COVID- 19 Pandemic [J]. J Endourol, 2024, 38(9): 902-907.
[3] ZYOUD SH, ABUSHAMMA F, SHAHWAN M, et al. Visualizing the landscape of urolithiasis research from 1979- 2023: a global bibliometric analysis of randomized clinical trials [J]. Urolithiasis, 2024, 52(1): 153.
[4] FERRARO PM, TAYLOR EN, CURHAN GC. 24- Hour Urinary Chemistries and Kidney Stone Risk [J]. Am JKidney Dis, 2024, 84(2): 164-169.
[5] SKOLARIKOS A, SOMANI B, NEISIUS A, et al. Metabolic Evaluation and Recurrence Prevention for Urinary Stone Patients: An EAU Guidelines Update [J]. Eur Urol, 2024, 86(4): 343-363.
[6] GERAGHTY R, LOVEGROVE C, HOWLES S, et al. Role of Genetic Testing in Kidney Stone Disease: A Narrative Review [J]. Curr Urol Rep, 2024, 25(12): 311-323.
[7] SPASIANO A, TRECCANI M, DE TOMI E, et al. Characteristics and Yield of Modern Approaches for the Diagnosis of Genetic Causes of Kidney Stone Disease [J]. Genes (Basel), 2024, 15(11): 1470.
[8] PAYNE NG, BODDU SP, WYMER KM, et al. The Use of Genetic Testing in Nephrolithiasis Evaluation: A Retrospective Review From a Multidisciplinary Kidney Stone Clinic [J]. Urology, 2024, 193: 20-26.
[9] WANG G, MI J, BAI J, et al. Non- Coding RNAs in Kidney Stones [J]. Biomolecules, 2024, 14(2): 213.
[10] GAO Y, LIU D, ZHOU H, et al. Identification of biomarkers and potential therapeutic targets of kidney stone disease using bioinformatics [J]. World J Urol, 2024, 42(1): 17.
[11] WANG L, LI KP, CHEN SY, et al. Proteome- wide mendelian randomization identifies therapeutic targets for nephrolithiasis [J]. Urolithiasis, 2024, 52(1): 126.
[12] EULER A, WULLSCHLEGER S, SARTORETTI T, et al. Dual- energy CT kidney stone characterization- can diagnostic accuracy be achieved at low radiation dose? [J]. Eur Radiol, 2023, 33(9): 6238-6244.
[13] COPPOLA A, TESSITORE L, FONTANA F, et al. Dual-Energy Computed Tomography in Urological Diseases: A Narrative Review [J]. J Clin Med, 2024, 13(14): 4069.
[14] DILLINGER D, WALDECK S, OVERHOFF D, et al. Automated Kidney Stone Composition Analysis with PhotonCounting Detector CT, a Performance Study- A Phantom Study [J]. Acad Radiol, 2024: S1076-6332(24)00832-8.
[15] NESTLER T, STOLL R, SCHMELZ H, et al. Comparison of automated kidney stone size measurement and volumetry in photon counting CT compared to 3rd generation dual energy CT and physically measurements- an ex vivo study [J]. World J Urol, 2024, 42(1): 433.
[16] ZHU Q, CHEONG-IAO PANG P, CHEN C, et al. Automatic kidney stone identification: an adaptive feature-weighted LSTM model based on urine and blood routine analysis [J]. Urolithiasis, 2024, 52(1): 145.
[17] SHEE K, LIU AW, CHAN C, et al. A Novel Machine- Learning Algorithm to Predict Stone Recurrence with 24-Hour Urine Data [J]. J Endourol, 2024, 38(8): 809-816.
[18] ZHOU Z, WANG L, CAI L, et al. Comprehensive analysis and validation of TP73 as a biomarker for calcium oxalate nephrolithiasis using machine learning and in vivo and in vitro experiments [J]. Urolithiasis, 2024, 52(1): 164.
[19] KIM J, KWAK CW, UHMN S, et al. A Novel Deep Learning- based Artificial Intelligence System for Interpreting Urolithiasis in Computed Tomography [J]. Eur Urol Focus, S2405-4569(24)00123-8.
[20] AHMED F, ABBAS S, ATHAR A, et al. Identification of kidney stones in KUB X-ray images using VGG16 empowered with explainable artificial intelligence [J]. Sci Rep, 2024, 14(1): 6173.
[21] CUMPANAS AD, CHANTADULY C, MORGAN KL, et al. Efficient and Accurate Computed Tomography-Based Stone Volume Determination: Development of an Automated Artificial Intelligence Algorithm [J]. J Urol, 2024, 211(2): 256-265.
[22] YENIKEKALUVA A, AZEEZ SF, SAKEGAONKAR A, et al. UrologiQ: AI- based accurate detection, measurement and reporting of stones in CT-KUB scans [J]. Urolithiasis, 2024, 52(1): 170.
[23] Mukherjee P, Lee S, Elton DC, et al. Longitudinal follow-up of incidental renal calculi on computed tomography [J]. Abdom Radiol (NY), 2024, 49(1): 173-181.
[24] JAVID M, BHANDARI M, PARAMESHWARI P, et al. Evaluation of ChatGPT for Patient Counseling in Kidney Stone Clinic: A Prospective Study [J]. J Endourol, 2024, 38(4): 377-383.
[25] TALYSHINSKII A, JULIEBØ- JONES P, ZEESHAN HAMEED BM, et al. ChatGPT as a Clinical Decision Maker for Urolithiasis: Compliance with the Current European Association of Urology Guidelines [J]. Eur Urol Open Sci, 2024, 69: 51-62.
[26] Aksakalli T, Aksakalli IK, Cinislioglu AE, et al. Prediction of spontaneous distal ureteral stone passage using artificial intelligence [J]. Int Urol Nephrol, 2024, 56(7): 2179-2186.
[27] CASTELLANI D, GAUHAR V. Comparison Between H olmium: YAG Laser With MOSES Technology vs Thulium Fiber Laser Lithotripsy in Retrograde Intrarenal Surgery for Kidney Stones in Adults: A Propensity Score- Matched Analysis From the FLEXible Ureteroscopy Outcomes Registry. Reply [J]. J Urol, 2023, 210(6): 841-842.
[28] MARTOV A, ADILKHANOV M, ANDRONOV A, et al. T reatment of U rolithiasis with Thulium Fiber Laser in Fragmentation Mode Using Optimized Pulse Sequences [J]. J Endourol, 2024, 38(10): 1097-1103.
[29] JOHNSON J, LEE J, MOVASSAGHI M, et al. Comparative Analyses and Ablation Efficiency of Thulium Fiber Laser by Stone Composition [J]. J Urol, 2024, 211(3): 445-454.
[30] GAUHAR V, TRAXER O, CASTELLANI D, et al. Could Use of a Flexible and Navigable Suction Ureteral Access Sheath Be a Potential Game- changer in Retrograde Intrarenal Surgery? Outcomes at 30 Days from a Large, Prospective, Multicenter, Real- world Study by the European Association of Urology Urolithiasis Section [J]. Eur Urol Focus, 2024, S2405-4569(24)00073-7.
[31] HUANG WN, HUANG HL, WANG YH, et al. Application of 11/13Fr suctioning ureteral access sheath and 8.55Fr singleuse digital flexible ureteroscope in one-stage flexible ureteroscopic lithotripsy: an initial experience of 900 cases [J]. Urolithiasis, 2024, 52(1): 112.
[32] YANG J, LI Z, LAI C, et al. An In Vivo Assessment of a Novel Temperature Control Flexible Ureteroscope System for Monitoring and Controlling Intrarenal Temperature During Flexible Ureteroscopy [J]. Urology, 2024, 191: 38-44.
[33] DENG X, CHEN Y, ZHAI Q, et al. Fluid absorption during flexible ureteroscopy with intelligent control of renal pelvic pressure: a randomized controlled trial [J]. World J Urol, 2024, 42(1): 331.
[34] KWOK JL, SOMANI B, SARICA K, et al. Multicenter outcome analysis of different sheath sizes for Flexible and Navigable Suction ureteral access sheath (FANS) ureteroscopy: an EAU Endourology collaboration with the global FANS study group [J]. Urolithiasis, 2024, 52(1): 162.
[35] SHI J, HUANG T, SONG B, et al. The optimal ratio of endoscope- sheath diameter with negative- pressure ureteral access sheath: an in vitro research [J]. World J Urol, 2024, 42(1): 122.
[36] TSATURYAN A, KELLER EX, PETEINARIS A, et al. Fluid dynamics within renal cavities during endoscopic stone surgery: does the position of the flexible ureteroscope and ureteral access sheath affect the outflow rate? [J]. World J Urol, 2024, 42(1): 240.
[37] CHEW BH, HARPER JD, SUR RL, et al. Break Wave Lithotripsy for Urolithiasis: Results of the First- in- Human International Multi- Institutional Clinical Trial [J]. J Urol, 2024, 212(4): 580-589.
[38] NEDBAL C, YUEN SKK, AKRAM M, et al. First clinical evaluation of a flexible digital ureteroscope with direct in scope suctioning system (Pusen DISS 7.5Ch): prospective multicentric feasibility study [J]. World J Urol, 2024, 42(1): 560.
[39] ROSEN DC, DRESCHER MR, ARIAS VILLELA NL, et al. Advancements in Performance of Percutaneous Nephrolithotomy in Ambulatory Surgery Centers: Outcomes and Lessons From 1250+ Cases [J]. Urology, 2024, 184: 26-31.
[40] EL- HAJJ A, ABOU CHAWAREB E, ZEIN M, et al. First prospective clinical assessment of the ILY® robotic flexible ureteroscopy platform [J]. W orld J U rol, 2024, 42(1): 143.
[41] LANDMAN J, CLAYMAN RV, CUMPANAS AD, et al. Initial Clinical Experience With a Novel Robotically Assisted Platform for Combined Mini- Percutaneous Nephrolithotomy and Flexible Ureteroscopic Lithotripsy [J]. J Urol, 2024, 212(3): 483-493.
[42] YANG J, ZHOU X, ZHOU X, et al. Percutaneous nephrolithotomy guided by 5G- powered robot- assis tedteleultrasound diagnosis system: first clinical experience with a novel tele- assistance approach (IDEAL stage 1) [J]. BMC Urol, 2024, 24(1): 17.
[43] ERGÜL RB, GURCAN M, AYDIN AB, et al. Robotic Flexible U reteroscopy: A Step- by- Step Video by Using Roboflex Avicenna Platform [J]. Urology, 2024, 189: e8-e9.
[44] SALAH M, LAYMON M, GUL T, et al. Optimizing outcome reporting after robotic flexible ureteroscopy for management of renal calculi: Introducing the concept of tetrafecta [J]. J Robot Surg, 2024, 18(1): 128.
[45] LENG J, LIU J, CHENG G, et al. Development of UroSAM: A Machine Learning Model to Automatically Identify Kidney Stone Composition from Endoscopic Video [J]. J Endourol, 2024, 38(8): 748-754.
[46] SONG R, LIU B, XU H. CT-based deep learning model for predicting the success of extracorporeal shock wave lithotripsy in treating ureteral stones larger than 1 cm [J]. Urolithiasis, 2024, 52(1): 157.
[47] ZOU XC, LUO CW, YUAN RM, et al. Develop a radiomics-based machine learning model to predict the stonefree rate post- percutaneous nephrolithotomy [J]. Urolithiasis, 2024, 52(1): 64.
[48] NEDBAL C, ADITHYA S, NAIK N, et al. Can Machine Learning Correctly Predict Outcomes of Flexible Ureteroscopy with Laser Lithotripsy for Kidney Stone Disease? Results from a Large Endourology University Centre [J]. Eur Urol Open Sci, 2024, 64: 30-37.
[49] CASTELLANI D, DE STEFANO V, BROCCA C, et al. The infection post flexible UreteroreNoscopy (I-FUN) predictive model based on machine learning: a new clinical tool toassess the risk of sepsis post retrograde intrarenal surgery for kidney stone disease [J]. World J Urol, 2024, 42(1): 612.
[50] ARIVOLI K, VALICEVIC AN, OERLINE MK, et al. Preventive Pharmacological Therapy and Risk of Recurrent Urinary Stone Disease [J]. Clin J Am Soc Nephrol, 2024, 19(5): 565-572.
[51] JHollingsworth JM, Oerline MK, Hsi RS, et al. RealWorld Effectiveness of Preventive Pharmacological Therapy in Patients With Urolithiasis: A Retrospective Cohort Study [J]. Am J Kidney Dis, 2024, 84(1): 83-93, e1.
[52] JAUNET-LAHARY T, SHIMAMURA T, HAYASHI M, et al. Structure and mechanism of oxalate transporter OxlT in an oxalate- degrading bacterium in the gut microbiota [J]. Nat Commun, 2023, 14(1): 1730.
[53] XU M, QIN Y, XIA Y, et al. Screening of oxalatedegrading probiotics and preventive effect of Lactiplantibacillus plantarum AR1089 on kidney stones [J]. Food Funct, 2024, 15(19): 10163-10178.
[54] Hsiao PR, Wei JC. Sodium-Glucose Cotransporter 2 Inhibitors and the Risk of Nephrolithiasis in Clinical Practice [J]. JAMA Intern Med, 2024, 184(7): 851-852.
[55] MCCORMICK N, YOKOSE C, LU N, et al. Comparative effectiveness of sodium- glucose cotransporter- 2 inhibitors for recurrent nephrolithiasis among patients with pre- existing nephrolithiasis or gout: target trial emulation studies [J]. BMJ, 2024, 387: e080035.
[56] SUI W, YANG H, DESAI M, et al. The potential role of Sodium/Glucose Cotransporter 2 inhibitors in the treatment of cystinuria [J]. Urolithiasis, 2024, 52(1): 168.
洪扬,许清泉.2024年泌尿系结石诊治进展[J].泌尿外科杂志(电子版),2025,17(1):3-10.DOI:10.20020/j.CNKI.1674-7410.2025.01.01
暂无相关信息!
泌尿系结石是全球常见的泌尿系统疾病,发病率逐年上升。我国上尿路结石患病率上升到8%左右,两广地区甚至超过10%[1]。结石的形成与多种因素有关,包括遗传、饮食、脱水、肥胖以及代谢异常等。肾结石早期症状不明显,且治疗后易复发,长期管理难度大,尽管结石微创手术有了很大进步,但是复杂肾结石的治疗仍然棘手。近年来,伴随着泌尿系结石微创手术技术,尤其是输尿管软镜技术的进展,从事泌尿系结石手术的医生越来越多,而泌尿系结石,特别是肾结石的治疗方式也发生了显著变化。EMILY等[2]分析了一项美国医保数据,发现2013-2021年,肾结石的微创治疗方法(体外冲击波碎石、输尿管镜碎石术及经皮肾镜碎石术)比例发生了显著变化。输尿管镜碎石术成为最受欢迎的手术方式,从2013年占比37%上升到2021年占比64%。体外冲击波碎石占比则从2013年62%降低到2021年34%。这期间从事输尿管镜碎石术和经皮肾镜碎石术的医生数量翻了一番以上。国内同行在泌尿系结石领域作出了较大贡献,ZYOUD等[3]使用文献计量技术分析1979-2023年发表的泌尿结石相关随机对照试验资料,共有693篇随机对照研究文献,国内同行贡献最大,发表了166篇(23.95%),其次是美国,发表130篇文章(18.76%)。2024年,泌尿系结石在诊断、治疗及预防复发等方面取得了不少进展,人工智能、机器深度学习、大数据模型等技术在泌尿系结石诊治方面得到广泛应用,显著提高了临床诊治水平,提高了工作效率。本文将重点结合2024年发表的文献简要介绍泌尿系结石代谢评估、分子诊断、影像技术、微创手术、药物治疗以及预防方面的进展。
1 泌尿系结石诊断技术进展
1.1 代谢评估和分子诊断
1.2 影像技术
1.3 人工智能、机器深度学习、大数据模型等技术在泌尿系结石诊断方面的应用
2 结石治疗进展
2.1 碎石设备
2.2 辅助设备
2.3 结石微创手术
2.4 AI、机器深度学习、大数据模型等技术在泌尿系结石治疗方面的应用3.预防4.存在的问题5.小结和展望
未来研究需要进一步深入探索不同成分肾结石形成的机制,AI、机器学习及大数据技术,通过整合遗传学、代谢组学、生活方式等因素,医生将能够为高风险患者梳理详细的危险因素,并制定个体化的策略,避免结石的发生或复发。结石治疗措施,从草酸钙结石溶石药物到更加高效安全的碎石技术,也有望取得进展。
暂无相关信息!
暂无相关信息!
作者相关文章