上尿路修复是泌尿外科领域的重要分支。近年来,该领域在创新材料研发、微创手术技术优化及再生医学应用方面取得一些进展。药物洗脱输尿管支架中雷帕霉素及紫杉醇的应用为抗纤维化治疗提供了新思路。微创手术包括机器人辅助技术逐渐成为主流,复杂输尿管狭窄的手术治疗技术在微创化基础上不断优化。内镜治疗如球囊扩张和自扩张金属支架在特定患者中展现了一定的替代价值。此外,组织工程技术突破了复杂输尿管修复的传统局限,初步研究证明了其构建生物相容性组织的潜力。未来需要通过多中心随机临床试验与跨学科协作,推动新技术的临床转化与标准化,逐步形成规范的上尿路修复诊疗模式。
暂无相关信息!
[1] PAFFENHOLZ P, HEIDENREICH A. Modern surgical strategies in the management of complex ureteral strictures [J]. Curr Opin Urol, 2021, 31(2): 170-176.
[2] KHAN SA, RAHMAN ZU, JAVED A, et al. Natural biopolymers in the fabrication and coating of ureteral stent: An overview [J]. Biomater Adv, 2024, 165: 214009.
[3] XIA K, SHEN X, ANG X, et al. Surface modification of ureteral stents: development history, classification, function, and future developments [J]. Expert Rev Med Devices, 2023, 20(5): 401-416.
[4] GAO X, DI X, CHEN G, et al. Metal ureteral stents for ureteral stricture: 2 years of experience with 246 cases [J]. Int J Surg, 2024, 110(1): 66-71.
[5] HU J, WANG Z, HU H, et al. In vitro and in vivo a sse ssm e n t of a bilaye re d de g ra dable ra pam y cin - elu tin g stent for ureteral stricture caused by holmium: YAG laser lithotripsy [J]. Acta Biomater, 2023, 172: 321-329.
[6] DUAN L, LI L, ZHAO Z, WANG X, et al. Antistricture Ureteral Stents with a Braided Composite Structure and Surface Modification with Antistenosis Drugs[J]. ACS Biomater Sci Eng, 2024, 10(1): 607-619.
[7] BILOTTA A, WIEGAND LR, HEINSIMER KR. Heinsimer, Ureteral reconstruction for complex strictures: a review of the current literature [J]. Int Urol Nephrol, 2021, 53(11): 2211-2219.
[8] LBERS JR, RODRÍGUEZ SOCARRÁS M, RIVAS JG, et al. Robotic Repair of Ureteral Strictures: Techniques and Review [J]. Curr Urol Rep, 2021, 22(8): 39.
[9] LUCAS JW, GHIRALDI E, ELLIS J, et al. Endoscopic Management of Ureteral Strictures: an Update [J]. Curr Urol Rep, 2018, 19(4): p. 24.
[10] LI X, ZHAO F, XU L, et al. The safety and efficacy of paclitaxel- coated balloon for ureteric stenosis in a porcine model [J]. BJU Int, 2024, 134(4): 564-567.
[11] PÉREZ- BERTÓLEZ S, MARTÍN- SOLÉ O, Casal- Beloy I, et al. Risk and protective factors for secondary procedures after endoscopic dilatation of primary obstructive megaureters [J]. World J Urol, 2024, 42(1): 463.
[12] LI Z, YANG K, DU Y, et al. Endoscopic Management of Adult Primary Obstructive Megaureter: Techniques and Long- term Outcomes [J]. Eur Urol Open Sci, 2024, 68: 18-24.
[13] FLEGAR L, KIPFER F, DURMUS T, et al. Pyeloplasty and Ureteral Reconstruction Surgery Trends: A Total Population Analysis in Germany from 2006 to 2022 [J]. Eur Urol Open Sci, 2024, 70: 116-123.
[14] FAN S, CHEN S, LI X, et al. Totally Intracorporeal Robot- Assisted Bilateral Ileal Ureter Replacement for the Treat- ment of Ureteral Strictures using Kangduo Surgical Robot 2000 Plus [J]. Int Braz J Urol, 2024, 50(6): 781-782.
[15] LI Z, CHEN S, DU Y, et al. Modified robot- assisted laparoscopic dismembered pyeloplasty for adult patients with horseshoe kidney: techniques and medium-term outcomes [J]. Minerva Urol Nephrol, 2024.
[16] HUANG C, YANG K, GAO W, et al. Ileal ureter replacement and ileocystoplasty for the treatment of bilateral ureteral strictures and bladder contracture: technique and outcomes [J]. Minerva Urol Nephrol, 2024, 76(1): 97-109.
[17] CHAI S, XIAO X, CHEN J, et al. Treating Multifocal Ureteral Strictures with Combined Techniques: 14 Cases of Initial Experience [J]. J Endourol, 2024, 38(3): 283-289.
[18] HEO JE, HAN HH, LEE J, et al. Single- port robotassisted pyeloplasty using the da Vinci SP system versus multi- port pyeloplasty: Comparison of outcomes and costs [J]. Asian J Surg, 2024, 47(9): 3841-3846.
[19] SOYSTER ME, BURNS RT, SLAVEN JE, et al. Longterm Renal Preservation and Complication Profile With Ileal Ureter Creation [J]. Urology, 2024, 188: 138-143.
[20] WANG X, MENG C, LI D, et al. Minimally invasive ureteroplasty with lingual mucosal graft for complex ureteral stricture: analysis of surgical and patient-reported outcomes [J]. Int Braz J Urol, 2024, 50(1): 46-57.
[21] DRA IN A, JUN M S, ZHAO LC. R obo tic U re te ral Reconstruction [J]. Urol Clin North Am, 2021, 48(1): 91-101.
[22] KAPETANOS K, LIGHT A, THAKARE N, et al. Bioengineering solutions for ureteric disorders: clinical need, challenges and opportunities [J]. BJU Int, 2022, 130(4): 408-419.
[23] DUAN L, WANG Z, FAN S, et al. Research progress of biomaterials and innovative technologies in urinary tissue engineering [J]. Front Bioeng Biotechnol, 2023, 11: 1258666.
[24] CHENG Q, ZHANG L, ZHANG J, et al. Decellularized Scaffolds with Double-Layer Aligned Microchannels Induce the Oriented Growth of Bladder Smooth Muscle Cells: Toward Urethral and Ureteral Reconstruction [J]. Adv Healthc Mater, 2023, 12(26): e2300544.
[25] TAKAGI K, MATSUMOTO K, TANIGUCHI D, et al. Regeneration of the ureter using a scaffold-free live- cell structure created with the bio- three- dimensional printing technique [J]. Acta Biomater, 2023, 165:102-110.
张一鸣,杜毅聪,李学松,等.2024年上尿路修复的进展和前景展望[J].泌尿外科杂志(电子版),2025,17(1):11-15.DOI:10.20020/j.CNKI.1674-7410.2025.01.02
暂无相关信息!
输尿管狭窄指输尿管部分或全段管腔较正常输尿管缩窄,导致尿液引流不畅,严重时继发狭窄段以上输尿管扩张及肾积水,甚至引起肾功能损伤与衰竭。输尿管狭窄病因众多,包括先天发育异常、结石嵌顿、手术损伤、放疗、感染、结核、腹膜后纤维化及肿瘤压迫等,其中医源性损伤最为常见[1]。及时恢复尿液通畅引流、保护肾功能是必要的。泌尿外科中,输尿管狭窄及其相关疾病的诊治一直是复杂而重要的挑战。手术重建是治疗输尿管狡窄的主要手段,但术式繁多、技术难度高,围术期管理复杂。内镜治疗虽可作为替代方案,但疗效尚不明确。除外科手术外,缺乏有效的辅助治疗手段。本文旨在综述2024年上尿路修复领域的最新进展,重点聚焦输尿管支架创新材料的研发、微创和机器人辅助手术技术的优化,以及再生医学技术的潜在应用。通过梳理最新研究成果及其临床意义,希望为上尿路修复领域的诊疗优化提供参考,为未来发展方向的探索奠定基础。
1 输尿管支架与新型材料
2 手术技术与创新
2.1 概述
2.2 内镜治疗进展
2.3 重建与机器人技术
2.4 患者预后与生活质量
3 组织工程与再生医学
4 结论
在过去一年里,上尿路修复领域的发展呈现出跨学科、多层次、创新驱动的特点。在临床实践中,对治疗方案仔细设计,大胆创新,灵活运用,严谨验证,为临床难以解决的复杂性输尿管狭窄提出安全有效的手术模式;在微创化的趋势下,发展与推动机器人技术的应用与国产化,验证内窥镜下治疗在特定患者群体中的可行性;在医学与多学科交叉融合的背景下,新型输尿管支架材料与涂层、输尿管组织工程发展迅速,具有广阔的应用潜力。同时可见,临床实践的报道大多还是以回顾性、单中心的小样本观察性研究为主,异质性较大,缺乏长期随访结果。尽管这些研究已经报告了令人振奋的良好疗效,未来仍需要进一步的大规模前瞻性随机临床试验来验证。新兴材料与组织工程等前沿技术虽然发展迅猛,但临床应用尚处于探索阶段。加强多学科合作,推动前沿技术临床转化,将会是上尿路修复领域重要的增长点。未来的趋势是以前沿技术及基础研究为支撑,整合高质量临床研究结果,建立起上尿路修复全周期诊疗体系,为患者提供规范化、个体化的精准医疗。
暂无相关信息!
暂无相关信息!
作者相关文章