光学分子影像学近年来发展迅速,在前列腺癌中,多种近红外荧光和纳米探针等在诊断、手术导航等方面颇具潜力;在肾癌中,自发荧光光谱、荧光探针有力推动肿瘤的诊疗进程;在膀胱癌中,各类探针显著提高肿瘤的可视化,精确识别肿瘤边界并增强成像敏感性。放射性核素正电子发射断层扫描(positron emission tomography,PET)成像方面也进展显著,在前列腺癌中,前列腺特异性膜抗原(prostate-specific membrane antigen,PSMA)PET/CT检测转移更敏感,在临床分期、决策、预后及治疗方面意义重大;在肾癌中,多种PET/CT成像各有特点,显著增强诊断效能;在膀胱癌方面,PET/CT在临床分期及治疗方面发挥重要作用。未来,随着分子影像学的不断进步,必将在泌尿疾病领域发挥更关键的作用,为疾病的精准诊疗持续赋能,推动泌尿疾病的诊治向更高水平迈进。
暂无相关信息!
[1] FU H, LOU K, HE H, et al. A novel PSMA targeted dual-function near-infrared fluorescence and PET probe for the image-guided surgery and detection of prostate cancer [J]. Eur J Nucl Med Mol Imaging, 2024, 51(10): 2998-3008.
[2] KONG S, PENG Y, LIU Q, et al. Preclinical Evaluation of a PSMA Aptamer-Based Bifunctional PET and Fluorescent Probe [J]. Bioconjug Chem, 2024, 35(9): 1352-1362.
[3] WU LL, ZHAO Q, WANG Q, et al. Membrane dualtargeting probes: A promising strategy for fluorescenceguided prostate cancer surgery and lymph node metastases detection [J]. Acta Pharm Sin B, 2023, 13(3): 1204-1215.
[4] WANG L, ZHUANG Y, PAN R, et al. Simultaneous targeting and monitoring of free antigen and in- situ membrane antigen in prostate cancer cells via an aggregation- induced emission- based bifunctional probe [J]. Biosens Bioelectron, 2024, 263: 116581.
[5] LI S, LI Q, CHEN W, et al. A Renal-Clearable Activatable M olecular Probe for Fluoro- Photacoustic and Radioactive Imaging of Cancer Biomarkers [J]. Small, 2022, 18(28): e2201334.
[6] OUYANG M, JIA M, CHANG Z, et al. Precise prostate cancer diagnosis using fluorescent nanoprobes for detecting PSA and PSMA in serum [J]. Chem Commun (Camb), 2024, 60(39): 5181-5184.
[7] HE P, YU H, DENG X, et al. Novel estrogen receptor β/histone deacetylase dual- targeted near- infrared fluorescent probes as theranostic agents for imaging and treatment of prostate cancer [J]. Eur J Med Chem, 2024, 268: 116236.
[8] TIAN Y, SHEN H, LI L, et al. Enhancing surgicaloutcomes: accurate identification and removal of prostate cancer with B7-H3-targeted NIR-Ⅱ molecular imaging [J]. Eur J Nucl Med Mol Imaging, 2024, 51(9): 2569-2582.
[9] PAVITHRAN MS, LUKOSE J, BARIK BK, et al. Laser induced fluorescence spectroscopy analysis of kidney tissues: A pilot study for the identification of renal cell carcinoma [J]. J Biophotonics, 2023, 16(11): e202300021.
[10] LI H, DENG C, ZHU N, et al. An ultrasensitive GSHspecific fluorescent probe unveils celastrol- induced ccRCC ferroptosis [J]. Bioorg Chem, 2023, 134: 106454.
[11] TERANISHI K. In Vivo Optical Imaging of Bladder Cancer Tissues in an MB49 Bladder Cancer Orthotopic Mouse Model Using the Intravesical or Intravenous Administration of Near- Infrared Fluorescence Probe [J]. Int J Mol Sci, 2023, 24(3): 2349.
[12] HAO H, WANG X, QIN Y, et al. Ex vivo near-infrared targeted imaging of human bladder carcinoma by ICG- antiCD47 [J]. Front Oncol, 2023, 13: 1083553.
[13] HOU DY, ZHANG NY, ZHANG P, et al. In vivo selfassembled bispecific fluorescence probe for early detection of bladder cancer and metastasis [J]. Sci Bull (Beijing), 2024, S2095-9273(24): 00792-00798.
[14] GUO P, QI A, SHANG W, et al. Targeting tumour surface collage with hydrogel probe: a new strategy to enhance intraoperative imaging sensitivity and stability of bladder cancer [J]. Eur J Nucl Med Mol Imaging, 2024, 51(13): 4165-4176.
[15] WANG Z, ZHAO C, LI Y, et al. Photostable CascadeActivatable Peptide Self-Assembly on a Cancer Cell Membrane for High- Performance Identification of H uman Bladder Cancer [J]. Adv Mater, 2023, 35(35): e2210732.
[16] QIN J, LIANG Q, WANG G, et al. Targeted delivery of nuclear targeting probe for bladder cancer using cyclic pentapeptide c(RGDfK) and acridine orange [J]. Clin Transl Oncol, 2023, 25(2): 375-383.
[17] CORNFORD P, VAN DEN BERGH RCN, BRIERS E, et al. EAU- EANM- ESTRO- ESUR- ISUP- SIOG Guidelines on Prostate Cancer- 2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent [J]. Eur Urol, 2024, 86(2): 148-163.
[18] CHOW KM, SO WZ, LEE HJ, et al. Head- to- head Comparison of the Diagnostic Accuracy of Prostate- specific Membrane Antigen Positron Emission Tom ography and Conventional Imaging Modalities for Initial Staging of Intermediate- to High- risk Prostate Cancer: A Systematic Review and Meta-analysis [J]. Eur Urol, 2023, 84(1): 36-48.
[19] EMMETT L, BUTEAU J, PAPA N, et al. The Additive Diagnostic Value of Prostate- specific Membrane Antigen Positron Emission Tomography Computed Tomography to Multiparametric Magnetic Resonance Imaging Triage in the Diagnosis of Prostate Cancer (PRIMARY): A Prospective Multicentre Study [J]. Eur Urol, 2021, 80(6): 682-689.
[20] HOFMAN MS, LAWRENTSCHUK N, FRANCIS RJ, et al. Prostate- specific membrane antigen PET- CT in patients with high- risk prostate cancer before curative- intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study [J]. Lancet, 2020, 395(10231): 1208-1126.
[21] PLOUSSARD G, STAERMAN F, PIERREVELCIN J, et al. Predictive factors of oncologic outcomes in patients who do not achieve undetectable prostate specific antigen after radical prostatectomy [J]. J Urol, 2013, 190(5): 1750-1756.
[22] WIEGEL T, BARTKOWIAK D, BOTTKE D, et al. Prostate- specific antigen persistence after radical prostatectomy as a predictive factor of clinical relapse-free survival and overall survival: 10-year data of the ARO 96-02 trial [J]. Int J Radiat Oncol Biol Phys, 2015, 91(2): 288-294.
[23] SCHMIDT-HEGEMANN NS, FENDLER WP, ILHAN H, et al. Outcome after PSMA PET/CT based radiotherapy in patients with biochemical persistence or recurrence after radical prostatectomy [J]. Radiat Oncol, 2018, 13(1): 37.
[24] FIZAZI K, HERRMANN K, KRAUSE BJ, et al. 576MO Health- related quality of life (HRQoL), pain and safety outcomes in the phase III VISION study of 177Lu-PSMA- 617 in patients with metastatic castration- resistant prostate cancer [J]. Ann Oncol, 2021, 32: S627-S628.
[25] NAKA S, WATABE T, KUR IMOTO K, et al. Automated [18F] PSMA- 1007 production by a single use cassette-type synthesizer for clinical examination [J]. EJNMMI Radiopharm Chem, 2020, 5(1): 18.
[26] MA H, SHEN G, LIU B, et al. Diagnostic performance of 18F-FDG PET or PET/CT in restaging renal cell carcinoma: a systematic review and meta- analysis [J]. Nucl Med Commun, 2017, 38(2): 156-163.
[27] WANG HY, DING HJ, CHEN JH, et al. Meta- analysis of the diagnostic performance of [18F]FDG-PET and PET/ CT in renal cell carcinoma [J]. Cancer Imaging, 2012, 12(3): 464-474.
[28] FAN L, XU Y, ZHAO J, et al. The diagnostic performance of 18F- FDG PET/CT in recurrent renal cell carcinoma: a systematic review and meta- analysis [J]. Clin Transl Imaging, 2023, 11(2): 199-208.
[29] ELAHMADAWY MA, ELAZAB MSS, AHMED S, et al. Diagnostic value of F-18 FDG PET/CT for local and distant disease relapse surveillance in surgically treated RCC patients: Can it aid in establishing consensus follow up strategy? [J]. Nucl Med Rev Cent East Eur, 2018, 21(2): 85-91.
[30] URSO L, BAUCKNEHT M, ALBANO D, et al. The evolution of PET imaging in renal, bladder, upper urinary tract urothelial, testicular and penile carcinoma-Today's impact, tomorrow's potential [J]. Expert Rev Med Devices, 2024, 21(1-2): 55-72.
[31] TABEI T, NAKAIGAWA N, KANETA T, et al. Early assessment with 18F-2-fluoro-2-deoxyglucose positron emission tomography/computed tomography to predict short-term outcome in clear cell renal carcinoma treated with nivolumab [J]. BMC Cancer, 2019, 19(1): 298.
[32] GAUDREAULT M, CHANG D, HARDCASTLE N, et al. Feasibility of biology-guided radiotherapy for metastatic renal cell carcinoma driven by PSMA PET imaging [J]. Clin Transl Radiat Oncol, 2023, 40: 100608.
[33] SU ZT, SINGLA N, ALLAF ME. Advances in Molecular Imaging for Renal Tumors [J]. J Urol, 2024, 211(6): 794-796.
[34] SHUCH BM, PANTUCK AJ, BERNHARD JC, et al. Results from phase 3 study of 89Zr- DFO- girentuximab for PET/CT imaging of clear cell renal cell carcinoma (ZIRCON)[J]. J Clin Oncol, 2023, 41: LBA602.
[35] VERHOEFF SR, VAN ES SC, BOON E, et al. Lesion detection by [89Zr]Zr- DFO- girentuximab and [18F]FDGPET/CT in patients with newly diagnosed metastatic renal cell carcinoma [J]. Eur J Nucl Med Mol Imaging, 2019, 46(9): 1931-1939.
[36] WANG Z, AN HW, HOU D, et al. Addressable Peptide Self- Assembly on the Cancer Cell Membrane for Sensitizing Chemotherapy of Renal Cell Carcinoma [J]. Adv Mater, 2019, 31(11): e1807175.
[37] AN HW, HOU D, ZHENG R, et al. A Near- Infrared Peptide Probe with Tumor- Specific Excretion- Retarded Effect for Image-Guided Surgery of Renal Cell Carcinoma [J]. ACS Nano, 2020, 14(1): 927-936.
[38] ZHANG- YIN J, GIRARD A, MARCHAL E, et al. PET Imaging in Bladder Cancer: An Update and Future Direction [J]. Pharmaceuticals (Basel), 2023, 16(4): 606.
[39] DASON S, CHA EK, FALAVOLTI C, et al. Late Recurrences Following Radical Cystectomy Have Distinct Prognostic and Management Considerations [J]. J Urol, 2020, 204(3): 460-465.
[40] KIM SK. Role of PET/CT in muscle- invasive bladder cancer [J]. Transl Androl Urol, 2020, 9(6): 2908-2919.
[41] UNTERRAINER LM, EISMANN L, LINDNER S, et al. [68 Ga]Ga-FAPI-46 PET/CT for locoregional lymph node staging in urothelial carcinoma of the bladder prior to cystectomy: initial experiences from a pilot analysis [J]. Eur J Nucl Med Mol Imaging, 2024, 51(6): 1786-1789.
于天熙,王子琦,徐万海.2024年泌尿外科分子影像学研究回顾与未来展望[J].泌尿外科杂志(电子版),2025,17(1):48-54.DOI:10.20020/j.CNKI.1674-7410.2025.01.07
暂无相关信息!
在肿瘤的诊治中,早期诊断和临床分期至关重要,影像学的发展能显著推动癌症患者的诊疗及预后管理。分子影像学作为其重要的一个分支,对于肿瘤的精确定位和转移分期意义重大,包括放射性核素正电子发射断层扫描(positron emission tomography,PET)成像以及光学分子影像学等。PET成像利用放射性核素标记的分子示踪剂靶向肿瘤的特定生物过程,当与常规成像同时使用时,兼具放射性示踪剂的敏感性和特异性以及结构成像的高分辨率。光学分子影像学一种利用光学成像技术对生物体内的分子和细胞事件进行可视化的学科领域,主要是通过检测生物体内的荧光、生物发光等光学信号来实现对细胞功能、分子相互作用以及疾病相关生物标志物的成像与监测。但目前分子影像学面临诸多挑战,需要进一步优化从而提高其诊断疾病的能力。本文旨在综述近年来泌尿外科分子影像学领域的最新进展,同时基于现有的成果去突破当前技术的局限,并探讨未来的发展方向,最终推动分子影像学技术在泌尿外科领域的持续创新。着重介绍光学分子影像学及放射性核素PET成像在常见泌尿系肿瘤中的应用,强调其在临床实践中的重要性,探讨分子影像学的不足和挑战并展望未来。
1 光学分子影像学在泌尿外科疾病中应用
1.1 前列腺癌
1.1.1 近红外荧光(near-infrared fluorescence,NIRF)和PET探针在前列腺癌中(prostate cancer,PCa)的应用
1.1.2 双靶向探针在 PCa中的应用
1.1.2.1 双靶向探针 Cy-KUE-OA
1.1.2.2 基于聚集诱导发射的双靶向探针
1.1.3 多模态分子探针在 PCa中的应用
1.1.4 新型纳米探针在 PCa中的应用
1.1.5 靶向 B7-H3的探针在 PCa中的应用
1.2 肾细胞癌
1.2.1 自发荧光光谱在肾细胞癌(renal cell carcinoma, RCC)中的应用
1.2.2 靶向谷胱甘肽(glutathione,GSH)的荧光探针在RCC中的应用
1.3 膀胱癌
1.3.1 荧光探针 ASP5354在膀胱癌 (bladder cancer,BCa)中的研究
1.3.2 荧光探针ICG-anti-CD47在BCa中的研究
1.3.3 双特异性荧光探针 bsProbe 在 BCa 中的研究
1.3.4 胶原粘附探针CA-P在BCa中的研究
1.3.5 光稳定级联激活肽系统在 BCa中的研究
1.3.6 核靶向探针 AO-(cRGDfK)2在 BCa中的应用
2 放射性核素成像
2.1 前列腺癌
2.1.1 PSMA PET/CT成像的优势体现
2.1.2 PSMA PET/CT扫描的局限性
2.2 肾细胞癌
2.2.1 18F-FDG PET/CT 在 RCC 中研究
2.2.2 PSMA PET/CT 在 RCC 中的研究
2.2.3 124I/89Zr- cG250 PET/CT 在 RCC 中的研究
2.2.4 放射性示踪剂标记的 CAIX小分子配体在 RCC 中的研究
2.3 膀胱癌
2.3.1 18F-FDG PET/CT在BCa中的应用
2.3.2 68Ga- FAPI- 46 PET 在 BCa中的应用
3 分子影像学的未来和展望
放射性核素PET成像在分子影像学中地位重要。未来,随着新型放射性示踪剂的研发,能对更多生物过程进行精准成像,同时其分辨率有望进一步提高,图像质量提升后可以更准确地定位微小病变。同时,PET成像和其他成像技术的融合将更加紧密,实现多模态成像,为临床提供更全面的信息。光学分子影像学未来可能在肿瘤的早期诊疗和术中导航方面大放异彩。借助NIRF等技术,能够实现术中实时成像,帮助医生精准切除肿瘤。新的分子探针及先进设备会不断涌现,使成像深度和清晰度不断改善,而且光学成像设备会向小型化、便携化发展,便于临床应用和床旁检测。
暂无相关信息!
暂无相关信息!
作者相关文章