泌尿系肿瘤严重威胁患者健康与生命,精准治疗已成为该领域的关键发展方向。近年来,随着基因检测技术、分子影像学、生物信息学等多学科的迅猛发展,泌尿系肿瘤精准治疗取得显著进展。在肾癌方面,对其多种基因突变及信号通路的深入探究,推动了靶向治疗与免疫治疗药物的研发与优化,显著改善了患者预后。膀胱癌的精准治疗聚焦于特定分子标志物的检测,精准分层以指导手术、化疗、免疫治疗等个性化方案的制定,提高了治疗的有效性与针对性。前列腺癌则凭借精准的基因分型与新型内分泌治疗药物的应用,以及多参数磁共振成像等先进诊断技术辅助,为患者提供更精准的诊疗策略。同时,液体活检技术在泌尿系肿瘤的早期诊断、疗效监测与复发预警中发挥着日益重要的作用。然而,精准治疗仍面临诸多挑战,如生物标志物的标准化、治疗耐药性的克服以及高昂的治疗成本等。未来,跨学科合作与大数据共享有望进一步推动泌尿系肿瘤精准治疗的持续发展,为患者带来更多生存获益并提升生活质量。
暂无相关信息!
[1] BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2024, 74(3): 229-263.
[2] MOCH H, AMIN MB, BERNEY DM, et al. The 2022 World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours [J]. Eur Urol, 2022, 82(5): 458-468.
[3] SIEGEL RL, MILLER KD, WAGLE NS, et al. Cancer statistics, 2023 [J]. CA Cancer J Clin, 2023, 73(1): 17-48.
[4] COLLINS FS, VARMUS H. A new initiative on precision medicine [J]. N Engl J Med, 2015, 372(9): 793-795.
[5] SUNG H, FERLAY J, SIEGEL RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[6] 李星, 曾晓勇. 中国前列腺癌流行病学研究进展[J]. 肿瘤防治研究, 2021, 48(1): 98-102.
[7] HUSSAIN M, MATEO J, FIZAZI K, et al. Survival with Olaparib in Metastatic Castration-Resistant Prostate Cancer [J]. N Engl J Med, 2020, 383(24): 2345-2357.
[8] CARDOSO HJ, CARVALHO TMA, FONSECA LRS, et al. Revisiting prostate cancer metabolism: From metabolites to disease and therapy [J]. Med Res Rev, 2021, 41(3): 1499-1538.
[9] AGARWAL N, AZAD AA, CARLES J, et al. Talazoparib plus enzalutamide in men with first-line metastatic castrationresistant prostate cancer (TALAPRO-2): a randomised, placebocontrolled, phase 3 trial [J]. Lancet, 2023, 402(10398): 291-303.
[10] DORFF T, HORVATH LG, AUTIO K, et al. A Phase I Study of Acapatamab, a Half-life Extended, PSMA-Targeting Bispecific T- cell Engager for Metastatic Castration- Resistant Prostate Cancer [J]. Clin Cancer Res, 2024, 30(8): 1488-1500.
[11] CLARKE N, WIECHNO P, ALEKSEEV B, et al. Olaparib combined with abiraterone in patients with metastatic castrationresistant prostate cancer: a randomised, double-blind, placebocontrolled, phase 2 trial [J]. Lancet Oncol, 2018, 19(7):975-986.
[12] OLIVEIRA M, SAURA C, NUCIFORO P, et al. FAIRLANE, a double- blind placebo- controlled randomized phase Ⅱ trial of neoadjuvant ipatasertib plus paclitaxel for early triple- negative breast cancer [J]. Ann Oncol, 2019, 30(8): 1289-1297.
[13] SWEENEY C, BRACARDA S, STERNBERG CN, et al. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): a multicentre, randomised, double- blind, phase 3 trial [J]. Lancet, 2021,398(10295): 131-142.
[14] ANTONARAKIS ES, PIULATS JM, GROSS-GOUPIL M, et al. Pembrolizumab for Treatment- Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase Ⅰ KEYNOTE- 199 Study [J]. J Clin Oncol, 2020,38(5): 395-405.
[15] YU EY, PIULATS JM, GRAVIS G, et al. Pembrolizumabplus Olaparib in Patients with Metastatic Castration- resistant Prostate Cancer: Long- term Results from the Phase 1b/2 KEYNOTE-365 Cohort A Study [J]. Eur Urol, 2023, 83(1): 15-26.
[16] KANTOFF PW, HIGANO CS, SHORE ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer [J]. N Engl J Med, 2010, 363(5): 411-422.
[17] KLOSS CC, LEE J, ZHANG A, et al. Dominant-Negative TGF-β Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation And Augments Prostate Cancer Eradication [J]. Mol Ther, 2018, 26(7): 1855-1866.
[18] NARAYAN V, BARBER-ROTENBERG JS, JUNG IY, et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial [J]. Nat Med, 2022, 28(4): 724-734.
[19] MONTIRONI R, CIMADAMORE A. Tumors of the Urinary System and Male Genital Organs: 2022 World Health Organization Classification and Multidisciplinarity [J]. Eur Urol, 2022, 82(5): 483-486.
[20] SCHÖDEL J, GRAMPP S, MAHER ER, et al. Hypoxia, Hypoxia- inducible Transcription Factors, and Renal Cancer [J]. Eur Urol, 2016, 69(4): 646-657.
[21] ATKINS MB, TANNIR NM. Current and emerging therapies for first-line treatment of metastatic clear cell renal cell carcinoma [J]. Cancer Treat Rev, 2018, 70: 127-137.
[22] JIAO Q, BI L, REN Y, et al. Advances in studies of tyrosine kinase inhibitors and their acquired resistance [J]. Mol Cancer, 2018, 17(1): 36.
[23] BRAUN DA, HOU Y, BAKOUNY Z, et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma [J]. Nat Med, 2020, 26(6): 909-918.
[24] ZHU Z, JIN Y, ZHOU J, et al. PD1/PD-L1 blockade in clear cell renal cell carcinoma: mechanistic insights, clinical efficacy, and future perspectives [J]. Mol Cancer, 2024, 23(1): 146.
[25] AU L, HATIPOGLU E, ROBERT DE MASSY M, et al. Determinants of anti-PD- 1 response and resistance in clear cell renal cell carcinoma [J]. Cancer Cell, 2021, 39(11): 1497-1518.e1411.
[26] PLIMACK ER, POWLES T, STUS V, et al. Pembrolizumab Plus Axitinib Versus Sunitinib as First- line Treatment of Advanced Renal Cell Carcinoma: 43- month Follow- up of the Phase 3 KEYNOTE- 426 Study [J]. Eur Urol, 2023, 84(5): 449-454.
[27] TOMITA Y, MOTZER RJ, CHOUEIRI TK, et al. Efficacy of avelumab plus axitinib versus sunitinib by numbers of IMDC risk factors and target tumor sites at baseline in advanced renal cell carcinoma: long-term follow-up results from JAVELIN Renal 101 [J]. ESMO Open, 2023, 8(6): 102034.
[28] POWLES T, PLIMACK ER, SOULIÈRES D, et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE- 426): extended follow- up from a randomised, open- label, phase 3 trial [J]. Lancet Oncol, 2020, 21(12): 1563-1573.
[29] YAN XQ, YE MJ, ZOU Q, et al. Toripalimab plus axitinib versus sunitinib as first-line treatment for advanced renal cell carcinoma: RENOTORCH, a randomized, openlabel, phase Ⅲ study [J]. Ann Oncol, 2024, 35(2): 190-199.
[30] PANEBIANCO V, NARUMI Y, ALTUN E, et al. Multiparametric Magnetic Resonance Imaging for Bladder Cancer: Development of VI- RADS (Vesical Imaging- Reporting And Data System) [J]. Eur Urol, 2018, 74(3): 294-306.
[31] PANEBIANCO V. VI-RADS for the diagnosis and management of urinary bladder cancer [J]. Eur Radiol, 2023, 33(10): 7209-7211.
[32] TSILI AC. VI-RADS scoring system for predicting 1- to 5- year recurrence of bladder cancer [J]. Eur Radiol, 2024, 34(5): 3032-3033.
[33] STRANDGAARD T, NORDENTOFT I, BIRKENKAMPDEMTRÖDER K, et al. Field Cancerization Is Associated with Tumor Development, T- cell Exhaustion, and Clinical Outcomes in Bladder Cancer [J]. Eur Urol, 2024, 85(1): 82-92.
[34] LIU L, CUI J, ZHAO Y, et al. KDM6A-ARHGDIB axis blocks metastasis of bladder cancer by inhibiting Rac1 [J]. Mol Cancer, 2021, 20(1): 77.
[35] NOERAPARAST M, KRAJINA K, PICHLER R, et al. FGFR3 alterations in bladder cancer: Sensitivity and resistance to targeted therapies [J]. Cancer Commun (Lond), 2024, 44(10): 1189-1208.
[36] TAN X, LIU Z, CAI T, et al. Prognostic Significance of HER2 Expression in Patients with Bacillus Calmette-Guérinexposed Non-muscle-invasive Bladder Cancer [J]. Eur Urol Oncol, 2024, 7(4): 760-769.
[37] BALAR AV, KAMAT AM, KULKARNI GS, et al. Pembrolizumab monotherapy for the treatment of high- risk non- muscle- invasive bladder cancer unresponsive to BCG (KEYNOTE- 057): an open- label, single- arm, multicentre, phase 2 study [J]. Lancet Oncol, 2021, 22(7): 919-930.
[38] NECCHI A, ROUMIGUIÉ M, KAMAT AM, et al. Pembrolizumab monotherapy for high- risk non- muscle- invasive bladder cancer without carcinoma in situ and unresponsive to BCG (KEYNOTE-057): a single- arm, multicentre, phase 2 trial [J]. Lancet Oncol, 2024, 25(6): 720-730.
[39] FRADET Y, BELLMUNT J, VAUGHN DJ, et al. Randomized phase Ⅲ KEYNOTE- 045 trial of pembrolizumab versus paclitaxel, docetaxel, or vinflunine in recurrent advanced urothelial cancer: results of >2 years of follow-up [J]. Ann Oncol, 2019, 30(6): 970-976.
[40] POWLES T, PARK SH, CASERTA C, et al. Avelumab First- Line Maintenance for Advanced Urothelial Carcinoma: Results From the JAVELIN Bladder 100 Trial After ≥2 Yearsof Follow-Up [J]. J Clin Oncol, 2023, 41(19): 3486-3492.
[41] LI S, SHI Y, DONG H, et al. Phase 2 Trial of Enfortumab Vedotin in Patients With Previously Treated Locally Advanced or Metastatic Urothelial Carcinoma in China [J]. Cancer Med, Nov 2024, 13(21): e70368.
[42] LORIOT Y, MATSUBARA N, PARK SH, et al. Erdafitinib or Chemotherapy in Advanced or Metastatic Urothelial Carcinoma [J]. N Engl J Med, 2023, 389(21): 1961-1971.
[43] NECCHI A, POUESSEL D, LEIBOWITZ R, et al. Pemigatinib for metastatic or surgically unresectable urothelial carcinoma with FGF/FGFR genomic alterations: final results from FIGHT-201 [J]. Ann Oncol, 2024, 35(2): 200-210.
[44] ROSENBERG JE, POWLES T, SONPAVDE GP, et al. EV- 301 long- term outcomes: 24- month findings from the phase Ⅲ trial of enfortumab vedotin versus chemotherapy in patients with previously treated advanced urothelial carcinoma [J]. Ann Oncol, 2023, 34(11): 1047-1054.
[45] TAGAWA ST, BALAR AV, PETRYLAK DP, et al. TROPHY-U-01: A Phase Ⅱ Open-Label Study of Sacituzumab Govitecan in Patients With Metastatic Urothelial Carcinoma Progressing After Platinum-Based Chemotherapy and Checkpoint Inhibitors [J]. J Clin Oncol, 2021, 39(22): 2474-2485.
[46] DING M, LIN J, QIN C, et al. Novel CAR- T Cells Specifically Targeting SIA- C IgG Dem onstrate Effective Antitumor Efficacy in Bladder Cancer [J]. Adv Sci (Weinh), 2024, 11(40): e2400156.
[47] GIL M, GUERRA J, ANDRADE V, et al. The impact of multidisciplinary team conferences in urologic cancer in a tertiary hospital [J]. Int Urol Nephrol, 2021, 53(1): 41-47.
[48] WINTERS DA, SOUKUP T, SEVDALIS N, et al. The cancer multidisciplinary team meeting: in need of change? History, challenges and future perspectives [J]. BJU Int, 2021, 128(3): 271-279.
[49] RONAN K, JORDAN E, LEONARD C, et al. Frequency of next- generation sequencing, prevalence of targetable mutations and response to targeted therapies amongst patients with metastatic urothelial cancer in Ireland: a multi- centre retrospective study of real- world data [J]. Ir J Med Sci,2024, 193(3): 1155-1161.
凌宏举,孙恺,夏庆华.2024年泌尿系肿瘤精准治疗进展[J].泌尿外科杂志(电子版),2025,17(1):73-80.DOI:10.20020/j.CNKI.1674-7410.2025.01.11
暂无相关信息!
泌尿系肿瘤主要包括前列腺癌、肾癌和膀胱癌,根据2022年全球癌症统计,泌尿系三大肿瘤在所有癌症中的新发病例数约占12.6%,前列腺癌是男性中第二大常见癌症,在男性所有新发癌症中,前列腺癌占比为14.1%[1]。泌尿系肿瘤在不同区域的发病率存在显著差异,前列腺癌是男性中最常见的癌症之一,发病率在北美、欧洲和大洋洲较高,而在亚洲和非洲相对较低。膀胱癌的发病率在男性中排名靠前,且与吸烟、职业暴露等密切相关[2]。肾细胞癌近年来呈上升趋势,其发病率在高收入国家尤其显著[3]。泌尿系肿瘤的生存率和预后因肿瘤类型和诊断阶段而异。例如,前列腺癌的5年生存率较高,尤其是在早期发现时接近 100%。然而,膀胱癌和肾癌在晚期的预后较差,其5年生存率分别降至约5%~10%。复发和转移是导致患者生存率下降的重要因素[2]。
精准治疗 (precision medicine) 是一种以患者的个体差异为基础,通过分析基因组学、蛋白质组学以及其他分子特征,制定个性化的疾病预防、诊断和治疗方案的医学模式。其核心理念是利用分子水平的技术手段识别疾病的特定驱动因素,从而实现靶向性治疗,避免传统“一刀切”治疗带来的低效和不良反应[4]。泌尿系肿瘤的精准诊断在近年来取得了显著进步 , 这得益于高通量测序(high-throughput sequencing)、生物信息学工具和人工智能(artificial intelligence, AI)技术的快速发展。这些技术为肿瘤的分子特征解析、个体化诊断和治疗决策提供了有力支持。
1 前列腺癌
2 肾癌
3 膀胱癌
4 多学科诊疗模式指导精准治疗
5 总结与展望
内分泌治疗与化疗仍是PCa治疗的主要手段,而PARP抑制剂等分子靶向药物为mPCa患者的精准治疗提供了更多选择。PARP抑制剂、AKT抑制剂等药物可单独用于治疗晚期PCa,也可与阿比特龙、多西他赛等药物联合使用,增强对mCRPC等晚期PCa的疗效,提高患者的生存质量。对前列腺癌的认识不断加深,精准治疗不断发展,为前列腺肿瘤患者提供了更多的个体化综合治疗方案。
以靶向药物联合ICI为基础的治疗方案为晚期肾癌的治疗带来了革命性的改变,靶免联合治疗已经在肾癌治疗领域发挥不可或缺的作用,尤其在转移性mRCC中表现出显著优势。基于患者基因测序结果可以进行精准靶点选择,个性化治疗方案,使患者获益。然而,在实际应用中仍需关注毒性管理、患者筛选和个体化治疗优化。随着新型靶点和联合方案的不断探索,靶免治疗有望为更多肾癌患者带来长期生存获益。
治疗膀胱癌的手段也日益丰富,ICI、TKI、ADC等提供了多种选择,有望看到更多保器官、保膀胱的治疗方法出现,为患者提供更加个性化、精准的治疗方案。
MDT是精准治疗泌尿系肿瘤中不可或缺的一环,为患者提供了更加细致全面的诊疗方案,为患者的治疗寻找最优解决办法,随着医学技术的不断进步和跨学科合作的深入,MDT模式将在泌尿系统肿瘤治疗领域发挥更加重要的作用。
暂无相关信息!
暂无相关信息!
作者相关文章