摘要:晚期肾癌 (renal cell carcinoma, RCC) 预后较差,靶向药物及免疫检查点抑制剂虽可使部分患者生存获 益,但存在生物利用度差、非特异靶向性、药物相关副反应多等问题,同时长期治疗易产生耐药性,降低了治疗 效果。纳米材料为近年肿瘤领域研究的热点,具有可控的表面化学活性、可控的药物释放动力学以及高渗透长滞 留效应,不仅本身可诱导肿瘤细胞的凋亡,也可参与药物的精准化靶向输送。纳米材料在 RCC治疗的基础性研 究中取得了一些成果,但成功运用于临床仍存在一些尚待解决的问题。论文综述了纳米材料在 RCC治疗中的应 用,并探讨了纳米材料成功运用于临床所面临的挑战,以期为今后纳米材料相关研究和应用提供参考。
暂无相关信息!
[1] LJUNGBERG B, ALBIGES L, ABU- GHANEM Y, et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2019 Update [J]. Eur Urol, 2019,75(5): 799-810
[2] MOTZER RJ, TANNIR NM, MCDERMOTT DF, et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal- Cell Carcinoma [J]. N Engl J Med, 2018,378(14): 1277-1290
[3] MOTZER RJ, ESCUDIER B, MCDERMOTT DF, et al. Nivolumab versus Everolimus in Advanced Renal- Cell Carcinoma[J]. N Engl J Med, 2015,373(19):1803-1813
[4] QIN S, LI AP, YI M, et al. Recent advances on antiangiogenesis receptor tyrosine kinase inhibitors in cancer therapy [J]. J Hematol Oncol, 2019,12:11
[5] O'DONNELL JS, LONG GV, SCOLYER RA, et al. Resistance to PD1/PDL1 checkpoint inhibition [J]. Cancer Treat Rev, 2017,52:71-81
[6] KHAN I, SAEED K, KHAN I. Nanoparticles: Properties, applications and toxicities [J]. Arabian J Chem, 2019, 12(7):908-931
[7] KALYANE D, RAVAL N, MAHESHWARI R, et al. Employment of enhanced permeability and retention effect (EPR): Nanoparticle- based precision tools for targeting of therapeutic and diagnostic agent in cancer [J]. Mater Sci Eng C Mater Biol Appl, 2019,98:1252-1276
[8] SENAPATI S, MAHANTA AK, KUMAR S, et al. Controlled drug delivery vehicles for cancer treatment and their performance [J]. Signal Transduct Target Thery, 2018,3:19
[9] FOULKES R, MAN E, THIND J, et al. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives [J]. Biomater Sci, 2020,8 (17):4653-4664
[10] WANG ZQ, AN HW, HOU DY, et al. Addressable Peptide Self- Assembly on the Cancer Cell Membrane for Sensitizing Chemotherapy of Renal Cell Carcinoma [J]. Adv Mater, 2019,31(11):e1807175
[11] GAO XG, JIANG P, ZHANG Q, et al. Peglated- H1/ pHGFK1 nanoparticles enhance anti- tumor effects of sorafenib by inhibition of drug- induced autophagy and stemness in renal cell carcinoma [J]. J Exp Clin Cancer Res, 2019,38(1):362
[12] HE MH, CHEN L, ZHENG T, et al. Potential Applications of Nanotechnology in Urological Cancer [J]. Front Pharmacol, 2018,9:745
[13] ALSAAB HO, SAU S, ALZHRANI RM, et al. Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages [J]. Biomaterials, 2018,183:280-294
[14] ZHOU L, LIU XD, SUN M, et al. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma [J]. Oncogene, 2015,35(21):2687-2697
[15] YANG Q, WANG Y, YANG Q, et al. Cuprous oxide nanoparticles trigger ER stress- induced apoptosis by regulating copper trafficking and overcoming resistance to sunitinib therapy in renal cancer [J]. Biomaterials, 2017,146: 72-85
[16] SREEKANTH TV, PANDURANGAN M, DILLIP GR, et al. Toxicity and efficacy of CdO nanostructures on the MDCK and Caki- 2 cells [J]. J Photochem Photobiol B, 2016,164:174-181
[17] CHEN Y, WANG M, ZHANG T, et al. Autophagic effects and mechanisms of silver nanoparticles in renal cells under low dose exposure [J]. Ecotoxicol Environ Saf, 2018,166:71-77
[18] LIU R, PEI Q, SHOU T, et al. Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma A498 cells [J]. Int J Nanomedicine, 2019,14:4091-4103
[19] CLARK AJ, WILEY DT, ZUCKERMAN JE, et al. CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing [J]. Proc Natl Acad Sci U S A, 2016,113(14):3850-3854
[20] KEEFE SM, HOFFMAN- CENSITS J, COHEN RB, et al. Efficacy of the nanoparticle- drug conjugate CRLX101 in combination with bevacizumab in metastatic renal cell carcinoma: results of an investigator-initiated phase I- IIa clinical trial[J]. Ann Oncol, 2016,27(8):1579-1585
[21] VOSS MH, HUSSAIN A, VOGELZANG N, et al. A randomized phase II trial of CRLX101 in combination with bevacizumab versus standard of care in patients with advanced renal cell carcinoma [J]. Ann Oncol, 2017,28(11): 2754-2760
[22] CALLAGHAN C, PERALTA D, LIU J, et al. Combined Treatment of Tyrosine Kinase Inhibitor- Labeled Gold Nanorod Encapsulated Albumin With Laser Thermal Ablation in a Renal Cell Carcinoma Model [J]. J Pharm Sci, 2016,105(1):284-292
[23] LIU J, ABSHIRE C, CARRY C, et al. Nanotechnology combined therapy: tyrosine kinase- bound gold nanorod and laser thermal ablation produce a synergistic higher treatment response of renal cell carcinoma in a murine model [J]. BJU International, 2017,119(2):342-348
[24] LIU J, BOONKAEW B, ARORA J, et al. Comparison of sorafenib-loaded poly (lactic/glycolic) acid and DPPC liposome nanoparticles in the in vitro treatment of renal cell carcinoma [J]. J Pharm Sci, 2015,104(3):1187-1196
[25] AKITA H, ISHIBA R, TOGASHI R, et al. A neutral lipid envelope-type nanoparticle composed of a pH-activated and vitamin E- scaffold lipid-like material as a platform for a gene carrier targeting renal cell carcinoma [J]. J Control Release, 2015,200:97-105
[26] WONG SC, CHENG WJ, HAMILTON H, et al. HIF2 alpha- Targeted RNAi Therapeutic Inhibits Clear Cell Renal Cell Carcinoma [J]. Mol Cancer Ther, 2018,17(1):140-149
[27] FUJII H, SHIN- YA M, TAKEDA S, et al. Cycloamylose- nanogel drug delivery system-mediated intratumor silencing of the vascular endothelial growth factor regulates neovascularization in tumor microenvironment [J]. Cancer Sci, 2014,105(12):1616-1625
[28] NAVYA PN, KAPHLE A, SRINIVAS SP, et al. Current trends and challenges in cancer management and therapy using designer nanomaterials [J]. Nano Convergence, 2019,6:30
[29] SUN TM, ZHANG YS, PANG B, et al. Engineered Nanoparticles for Drug Delivery in Cancer Therapy [J]. Angew Chem Int Ed Engl, 2014,53(46):12320-12364
[30] KULKARNI SA, FENG SS. Effects of Particle Size and Surface Modification on Cellular Uptake and Biodistribution of Polymeric Nanoparticles for Drug Delivery [J]. Pharm Res, 2013,30(10):2512-2522
[31] ALBANESE A, TANG PS, CHAN WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems [J]. Annu Rev Biomed Eng, 2012,14:1-16
[32] BORASCHI D, ITALIANI P, PALOMBA R, et al. Nanoparticles and innate immunity: new perspectives on host defence [J]. Semin Immunol, 2017,34:33-51
[33] MANSHIAN BB, POELMANS J, SAINI S, et al. Nanoparticle- induced inflammation can increase tumor malignancy [J]. Acta Biomater, 2018,68:99-112
[34] WIBROE PP, ANSELMO AC, NILSSON PH, et al. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes [J]. Nat Nanotechnol, 2017,12(6):589-594.
马春雷,付伟金. 纳米材料在肾癌治疗中的研究进展[J]. 泌尿外科杂志(电子版),2021,13(2):69-72. DOI:10.3969/j.issn.1674-7410.2021.02.016.
暂无相关信息!
肾细胞癌 (renal cell carcinoma, RCC) 的发病 率约占全身恶性肿瘤的 3%,早期或局限性 RCC患者 可通过根治性肾切除术获得治愈,而晚期或转移性 RCC 患者预后较差,5年生存率低于 10%[1] 。免疫检 查点抑制剂 (immune checkpoint inhibitors, ICIs) 及 酪 氨 酸 激 酶 抑 制 剂 (tyrosine kinase inhibitors, TKIs) 虽可使部分晚期 RCC患者生存获益[2,3] ,但长 期治疗易产生耐药性[4,5] ,相关药物不良反应也降低 了治疗效果。因此寻找一种高效、副反应少的治疗 方式对于提高晚期或转移性 RCC 患者的生存期十分重要。
纳米材料在三维空间尺度上至少有一维处于纳 米量级 (1~100 nm),主要包括金属、磁性、脂质 体等[6] 。它具有可控的表面化学活性,可通过药物释 放动力学以及高渗透长滞留效应 (enhanced permeability and retention, EPR) 富集在肿瘤组织中[7,8] , 为肿瘤精准治疗带来了希望。近年纳米材料应用于 相关肿瘤如晚期卵巢癌、转移性胰腺癌、乳腺癌等 取得了初步疗效[9] 。在 RCC 治疗中也取得了一定进 展[10-13] 。本文现就纳米材料在 RCC 治疗中的研究进展作一综述。
1 纳米材料的独立应用
2 纳米材料的联合应用
2.1 纳米材料与靶向药物的联合
2.2 纳米材料在基因载体系统中的应用
3 存在问题
4 结语与展望
4 结语与展望
纳米材料在 RCC 的基础性研究中虽取得了一些 成果,但应当看到纳米材料的大小、形状、表面特 性等影响着纳米材料的有效性以及对人体的毒副反 应。在今后纳米材料的开发研究中,需要重点关注 这些特性,以降低毒副反应,提高临床治疗有效 性,并经过大规模、多中心、随机、对照研究验证 其临床疗效后,才能真正地将纳米材料成功地运用 到 RCC的临床治疗中。
暂无相关信息!
暂无相关信息!